Source code for soccer_object_detection.test_object_detection

import os
import os.path
import pickle
import sys
from unittest import TestCase
from unittest.mock import MagicMock

import cv2
import numpy as np
import pytest
import rospy
import tf2_ros
import yaml
from cv2 import Mat
from cv_bridge import CvBridge
from sensor_msgs.msg import CameraInfo, Image

from soccer_common import Camera
from soccer_common.utils import download_dataset
from soccer_common.utils_rosparam import set_rosparam_from_yaml_file
from soccer_msgs.msg import GameState, RobotState
from soccer_object_detection.object_detect_node import Label, ObjectDetectionNode

set_rosparam_from_yaml_file()


[docs]def IoU(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) # compute the area of intersection rectangle interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) # compute the area of both the prediction and ground-truth # rectangles boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value return iou
[docs]class TestObjectDetection(TestCase): def test_object_detection_node(self): src_path = os.path.dirname(os.path.realpath(__file__)) test_path = src_path + "/../../images/simulation" download_dataset("https://drive.google.com/uc?id=11nN58j8_PBoLNRAzOEdk7fMe1UK1diCc", folder_path=test_path) rospy.init_node("test") Camera.reset_position = MagicMock() src_path = os.path.dirname(os.path.realpath(__file__)) model_path = src_path + "/../../models/half_5.pt" n = ObjectDetectionNode(model_path=model_path) n.robot_state.status = RobotState.STATUS_READY n.game_state.gameState = GameState.GAMESTATE_PLAYING cvbridge = CvBridge() for file_name in os.listdir(f"{test_path}/images"): print(file_name) img: Mat = cv2.imread(os.path.join(f"{test_path}/images", file_name)) # ground truth box = (68, 89) (257, 275) img_original_size = img.size img = cv2.resize(img, dsize=(640, 480)) img_msg: Image = cvbridge.cv2_to_imgmsg(img) # Mock the detections n.pub_detection = MagicMock() n.pub_boundingbox = MagicMock() n.pub_detection.get_num_connections = MagicMock(return_value=1) n.pub_boundingbox.get_num_connections = MagicMock(return_value=1) n.pub_detection.publish = MagicMock() n.pub_boundingbox.publish = MagicMock() ci = CameraInfo() ci.height = img.shape[0] ci.width = img.shape[1] n.camera.camera_info = ci n.camera.pose.orientation_euler = [0, np.pi / 8, 0] n.callback(img_msg) with open(os.path.join(f"{test_path}/labels", file_name.replace("PNG", "txt"))) as f: lines = f.readlines() if "DISPLAY" in os.environ: mat = cvbridge.imgmsg_to_cv2(n.pub_detection.publish.call_args[0][0]) cv2.imshow("Image", mat) cv2.waitKey(1000) cv2.destroyAllWindows() # Check assertion if n.pub_boundingbox.publish.call_args is not None: for bounding_box in n.pub_boundingbox.publish.call_args[0][0].bounding_boxes: if bounding_box.probability >= n.CONFIDENCE_THRESHOLD and int(bounding_box.Class) in [Label.BALL.value, Label.ROBOT.value]: bounding_boxes = [ bounding_box.xmin, bounding_box.ymin, bounding_box.xmax, bounding_box.ymax, ] best_iou = 0 best_dimensions = None for line in lines: info = line.split(" ") label = int(info[0]) if label != int(bounding_box.Class): continue x = float(info[1]) y = float(info[2]) width = float(info[3]) height = float(info[4]) xmin = int((x - width / 2) * ci.width) ymin = int((y - height / 2) * ci.height) xmax = int((x + width / 2) * ci.width) ymax = int((y + height / 2) * ci.height) ground_truth_boxes = [xmin, ymin, xmax, ymax] iou = IoU(bounding_boxes, ground_truth_boxes) if iou > best_iou: best_iou = iou best_dimensions = ground_truth_boxes self.assertGreater(best_iou, 0.05, f"bounding boxes are off by too much! Image= {file_name} Best IOU={best_iou}") if best_iou < 0.5: rospy.logwarn(f"bounding boxes lower than 0.5 Image= {file_name} Best IOU={best_iou}") # if "DISPLAY" in os.environ: # cv2.rectangle( # img=mat, # pt1=(best_dimensions[0], best_dimensions[1]), # pt2=(best_dimensions[2], best_dimensions[3]), # color=(255, 255, 255), # ) # if bounding_box.obstacle_detected is True: # cv2.circle(mat, (bounding_box.xbase, bounding_box.ybase), 0, (0, 255, 255), 3) if "DISPLAY" in os.environ: cv2.imshow("Image", mat) cv2.waitKey() cv2.destroyAllWindows() def test_object_detection_node_cam(self): rospy.init_node("test") Camera.reset_position = MagicMock() src_path = os.path.dirname(os.path.realpath(__file__)) model_path = src_path + "/../../models/half_5.pt" n = ObjectDetectionNode(model_path=model_path) n.robot_state.status = RobotState.STATUS_READY n.game_state.gameState = GameState.GAMESTATE_PLAYING cap = cv2.VideoCapture(4) if not cap.isOpened(): print("Cannot open camera") exit() cvbridge = CvBridge() while True: ret, frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting ...") break img = cv2.resize(frame, dsize=(640, 480)) img_msg: Image = cvbridge.cv2_to_imgmsg(img) # Mock the detections n.pub_detection = MagicMock() n.pub_boundingbox = MagicMock() n.pub_detection.get_num_connections = MagicMock(return_value=1) n.pub_boundingbox.get_num_connections = MagicMock(return_value=1) n.pub_detection.publish = MagicMock() n.pub_boundingbox.publish = MagicMock() ci = CameraInfo() ci.height = img.shape[0] ci.width = img.shape[1] n.camera.camera_info = ci n.camera.pose.orientation_euler = [0, np.pi / 8, 0] n.callback(img_msg) if "DISPLAY" in os.environ: mat = cvbridge.imgmsg_to_cv2(n.pub_detection.publish.call_args[0][0]) cv2.imshow("Image", mat) cv2.waitKey(1) # cv2.destroyAllWindows() # Check assertion if n.pub_boundingbox.publish.call_args is not None: for bounding_box in n.pub_boundingbox.publish.call_args[0][0].bounding_boxes: if bounding_box.probability >= n.CONFIDENCE_THRESHOLD and int(bounding_box.Class) in [Label.BALL.value, Label.ROBOT.value]: bounding_boxes = [ bounding_box.xmin, bounding_box.ymin, bounding_box.xmax, bounding_box.ymax, ] best_iou = 0 best_dimensions = None # for line in lines: # info = line.split(" ") # label = int(info[0]) # if label != int(bounding_box.Class): # continue # # x = float(info[1]) # y = float(info[2]) # width = float(info[3]) # height = float(info[4]) # # xmin = int((x - width / 2) * ci.width) # ymin = int((y - height / 2) * ci.height) # xmax = int((x + width / 2) * ci.width) # ymax = int((y + height / 2) * ci.height) # ground_truth_boxes = [xmin, ymin, xmax, ymax] # iou = IoU(bounding_boxes, ground_truth_boxes) # if iou > best_iou: # best_iou = iou # best_dimensions = ground_truth_boxes # self.assertGreater(best_iou, 0.05, f"bounding boxes are off by too much! Image= {file_name} Best IOU={best_iou}") # if best_iou < 0.5: # rospy.logwarn(f"bounding boxes lower than 0.5 Image= {file_name} Best IOU={best_iou}") # if "DISPLAY" in os.environ: # cv2.rectangle( # img=mat, # pt1=(best_dimensions[0], best_dimensions[1]), # pt2=(best_dimensions[2], best_dimensions[3]), # color=(255, 255, 255), # ) # if bounding_box.obstacle_detected is True: # cv2.circle(mat, (bounding_box.xbase, bounding_box.ybase), 0, (0, 255, 255), 3) if "DISPLAY" in os.environ: cv2.imshow("Image", mat) cv2.waitKey(1) # cv2.destroyAllWindows() @pytest.mark.skip(reason="Only run locally") def test_visualize_annotations(self): src_path = os.path.dirname(os.path.realpath(__file__)) # Data downloaded from https://github.com/bit-bots/TORSO_21_dataset annotation_path = "/home/robosoccer/hdd/dataset/dataV2/TORSO-21/simulation/train/annotations.yaml" annotation_pickle = "/home/robosoccer/hdd/dataset/dataV2/TORSO-21/simulation/train/annotation.pkl" image_path = "/home/robosoccer//hdd/dataset/dataV2/TORSO-21/simulation/train/images" if not os.path.exists(annotation_pickle): with open(annotation_path) as f: print("Pickling annotation, will take a long time") yaml_data = yaml.load(f) with open(annotation_pickle, "wb") as f2: pickle.dump(yaml_data, f2) return MAX_DIMENSIONS = (1778, 1000) with open(annotation_pickle, "rb") as f: annos = pickle.load(f)["images"] print( "Press 's' and 'd' to move between images. 'A' and 'S' let you jump 100 images.\n'c' to correct a label\n'v' to save image.\n'q' closes.\n'n' toggles not in image text. 'o' to toggle showing obstacles\n'e' to toggle all annotations" ) files = list(annos) files.sort() not_in_image = True show_obstacles = True show_annotations = True i = 0 while True: f = files[i] if "5733" not in f: print(f) i += 1 continue img_path = os.path.join(image_path, f) img = cv2.imread(img_path) assert img is not None h, w, c = img.shape text_thickness = int(w / 200) line_thickness = int(w / 200) y = 20 image_annos = annos[f]["annotations"] # sort lables to have them in the correct order. image_annos_sorted = [] correct_order = { "field edge": 0, "goalpost": 1, "left_goalpost": 2, "right_goalpost": 3, "crossbar": 4, "robot": 5, "obstacle": 6, "ball": 7, "L-Intersection": 8, "T-Intersection": 9, "X-Intersection": 10, } for a in image_annos: a["order"] = correct_order[a["type"]] image_annos_sorted = sorted(image_annos, key=lambda a: a["order"]) for a in image_annos_sorted: if show_annotations: if not a["in_image"] and "vector" in a: cv2.putText( img, f"{a['type']} completely concealed in image", (0, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), int(text_thickness / 2), ) y += 20 elif not a["in_image"]: if not_in_image: cv2.putText( img, f"{a['type']} not in image", (0, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), int(text_thickness / 2) ) y += 20 else: if a["type"] == "robot": color = (255, 0, 0) elif a["type"] == "ball": color = (0, 0, 255) elif a["type"] == "goalpost": color = (0, 255, 255) elif a["type"] == "left_goalpost": color = (255, 0, 255) elif a["type"] == "right_goalpost": color = (0, 255, 255) elif a["type"] == "crossbar": color = (0, 0, 255) elif a["type"] == "field edge": color = (0, 255, 0) elif a["type"] == "obstacle": color = (0, 0, 0) if a["type"] == "obstacle" and not show_obstacles: pass elif a["type"] == "robot" or a["type"] == "ball" or a["type"] == "obstacle": # bounding boxes x_start = int(a["vector"][0][0]) x_stop = int(a["vector"][1][0]) y_start = int(a["vector"][0][1]) y_stop = int(a["vector"][1][1]) contours = np.ndarray((4, 2), dtype=int) contours[0][0] = x_start contours[0][1] = y_start contours[1][0] = x_start contours[1][1] = y_stop contours[2][0] = x_stop contours[2][1] = y_stop contours[3][0] = x_stop contours[3][1] = y_start cv2.drawContours(img, [contours], -1, color, line_thickness) elif a["type"] == "goalpost" or a["type"] == "left_goalpost" or a["type"] == "right_goalpost" or a["type"] == "crossbar": contours = np.ndarray((4, 2), dtype=int) contours[0][0] = int(a["vector"][0][0]) contours[0][1] = int(a["vector"][0][1]) contours[1][0] = int(a["vector"][1][0]) contours[1][1] = int(a["vector"][1][1]) contours[2][0] = int(a["vector"][2][0]) contours[2][1] = int(a["vector"][2][1]) contours[3][0] = int(a["vector"][3][0]) contours[3][1] = int(a["vector"][3][1]) cv2.drawContours(img, [contours], -1, color, line_thickness) elif a["type"] == "field edge": points = [] for point in a["vector"]: points.append(point) pts = np.array(points, np.int32) pts = pts.reshape((-1, 1, 2)) img = cv2.polylines(img, [pts], False, color, line_thickness) else: color = (0, 0, 0) if a["type"] == "L-Intersection": txt = "L" elif a["type"] == "T-Intersection": txt = "T" elif a["type"] == "X-Intersection": txt = "X" else: print(a["type"]) exit(1) txt_size = cv2.getTextSize(txt, cv2.FONT_HERSHEY_COMPLEX, 1, text_thickness) cv2.putText( img, txt, (int(a["vector"][0][0] - (txt_size[0][0] / 2)), int(a["vector"][0][1] + (txt_size[0][1] / 2))), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), text_thickness, ) if h > MAX_DIMENSIONS[1]: scaling = MAX_DIMENSIONS[1] / h img = cv2.resize(img, (int(w * scaling), int(h * scaling))) cv2.imshow("img", img) key = cv2.waitKey(0) if key in [100]: # d i += 1 elif key == 68: # D i += 100 elif key in [115]: # s i -= 1 elif key == 83: # S i -= 100 elif key in [27, 113]: exit(0) elif key == 110: # n not_in_image = not not_in_image elif key == 111: # o show_obstacles = not show_obstacles elif key == 118: # v cv2.imwrite(f"../viz_{f}", img) elif key == 99: # c img_id = annos[f]["id"] os.system(f"firefox --new-tab https://imagetagger.bit-bots.de/annotations/{img_id}/") elif key == 101: show_annotations = not show_annotations i = max(0, i) i = min(len(files), i) sys.stdout.write("\x1b[A") sys.stdout.write("\x1b[A") print(f"Current image number {i} name {f}\n")